Air pollution is a significant risk factor for a number of pollution-related diseases, including respiratory infections, heart disease, COPD, stroke and lung cancer.[1] The human health effects of poor air quality are far reaching, but principally affect the body's respiratory system and the cardiovascular system. Individual reactions to air pollutants depend on the type of pollutant a person is exposed to, the degree of exposure, and the individual's health status and genetics.[2] Indoor air pollution and poor urban air quality are listed as two of the world's worst toxic pollution problems in the 2008 Blacksmith Institute World's Worst Polluted Places report.[3] Outdoor air pollution alone causes 2.1[4][5] to 4.21 million deaths annually.[1][6] Overall, air pollution causes the deaths of around 7 million people worldwide each year, and is the world's largest single environmental health risk.[1][7][8]
Productivity losses and degraded quality of life caused by air pollution are estimated to cost the world economy $5 trillion per year.[9][10][11] Various pollution control technologies and strategies are available to reduce air pollution.[12][13]
Pollutants
Main articles: Pollutant and Greenhouse gas
An air pollutant is a material in the air that can have adverse effects on humans and the ecosystem. The substance can be solid particles, liquid droplets, or gases. A pollutant can be of natural origin or man-made. Pollutants are classified as primary or secondary. Primary pollutants are usually produced by processes such as ash from a volcanic eruption. Other examples include carbon monoxide gas from motor vehicle exhausts or sulfur dioxide released from factories. Secondary pollutants are not emitted directly. Rather, they form in the air when primary pollutants react or interact. Ground level ozone is a prominent example of a secondary pollutant. Some pollutants may be both primary and secondary: they are both emitted directly and formed from other primary pollutants.
Before flue-gas desulfurization was installed, the emissions from this power plant in New Mexico contained excessive amounts of sulfur dioxide.
Schematic drawing, causes and effects of air pollution: (1) greenhouse effect, (2) particulate contamination, (3) increased UV radiation, (4) acid rain, (5) increased ground-level ozone concentration, (6) increased levels of nitrogen oxides.
Thermal oxidisers are air pollution abatement options for hazardous air pollutants (HAPs), volatile organic compounds (VOCs), and odorous emissions
Pollutants emitted into the atmosphere by human activity include:
Carbon dioxide (CO
2) – Because of its role as a greenhouse gas it has been described as "the leading pollutant"[14] and "the worst climate pollutant".[15] Carbon dioxide is a natural component of the atmosphere, essential for plant life and given off by the human respiratory system.[16] This question of terminology has practical effects, for example as determining whether the U.S. Clean Air Act is deemed to regulate CO
2 emissions.[17] CO
2 currently forms about 410 parts per million (ppm) of earth's atmosphere, compared to about 280 ppm in pre-industrial times,[18] and billions of metric tons of CO
2 are emitted annually by burning of fossil fuels.[19] CO
2 increase in earth's atmosphere has been accelerating.[20]Sulfur oxides (SOx) – particularly sulfur dioxide, a chemical compound with the formula SO2. SO2 is produced by volcanoes and in various industrial processes. Coal and petroleum often contain sulfur compounds, and their combustion generates sulfur dioxide. Further oxidation of SO2, usually in the presence of a catalyst such as NO2, forms H2SO4, and thus acid rain is formed.[2] This is one of the causes for concern over the environmental impact of the use of these fuels as power sources.
Nitrogen oxides (NOx) – Nitrogen oxides, particularly nitrogen dioxide, are expelled from high temperature combustion, and are also produced during thunderstorms by electric discharge. They can be seen as a brown haze dome above or a plume downwind of cities. Nitrogen dioxide is a chemical compound with the formula NO2. It is one of several nitrogen oxides. One of the most prominent air pollutants, this reddish-brown toxic gas has a characteristic sharp, biting odor.
Carbon monoxide (CO) – CO is a colorless, odorless, toxic gas.[21] It is a product of combustion of fuel such as natural gas, coal or wood. Vehicular exhaust contributes to the majority of carbon monoxide let into our atmosphere. It creates a smog type formation in the air that has been linked to many lung diseases and disruptions to the natural environment and animals.
Volatile organic compounds (VOC) – VOCs are a well-known outdoor air pollutant. They are categorized as either methane (CH4) or non-methane (NMVOCs). Methane is an extremely efficient greenhouse gas which contributes to enhanced global warming. Other hydrocarbon VOCs are also significant greenhouse gases because of their role in creating ozone and prolonging the life of methane in the atmosphere. This effect varies depending on local air quality. The aromatic NMVOCs benzene, toluene and xylene are suspected carcinogens and may lead to leukemia with prolonged exposure. 1,3-butadiene is another dangerous compound often associated with industrial use.
Particulate matter / particles, alternatively referred to as particulate matter (PM), atmospheric particulate matter, or fine particles, are tiny particles of solid or liquid suspended in a gas. In contrast, aerosol refers to combined particles and gas. Some particulates occur naturally, originating from volcanoes, dust storms, forest and grassland fires, living vegetation, and sea spray. Human activities, such as the burning of fossil fuels in vehicles, power plants and various industrial processes also generate significant amounts of aerosols. Averaged worldwide, anthropogenic aerosols—those made by human activities—currently account for approximately 10 percent of our atmosphere. Increased levels of fine particles in the air are linked to health hazards such as heart disease,[22] altered lung function and lung cancer. Particulates are related to respiratory infections and can be particularly harmful to those already suffering from conditions like asthma.[23]
Persistent free radicals connected to airborne fine particles are linked to cardiopulmonary disease.[24][25]
Toxic metals, such as lead and mercury, especially their compounds.
Chlorofluorocarbons (CFCs) – harmful to the ozone layer; emitted from products are currently banned from use. These are gases which are released from air conditioners, refrigerators, aerosol sprays, etc. On release into the air, CFCs rise to the stratosphere. Here they come in contact with other gases and damage the ozone layer. This allows harmful ultraviolet rays to reach the earth's surface. This can lead to skin cancer, eye disease and can even cause damage to plants.
Great Article..✌️