Are we really alone? ALMA Discovers Massive Rotating Disk In Early Universe

0 29
Avatar for t0ny420
4 years ago

In our 13.8 billion-year-old universe, most galaxies like our Milky Way form gradually, reaching their large mass relatively late. But a new discovery made with the Atacama Large Millimeter/submillimeter Array (ALMA) of a massive rotating disk galaxy, seen when the universe was only ten percent of its current age, challenges the traditional models of galaxy formation. Galaxy DLA0817g, nicknamed the Wolfe Disk after the late astronomer Arthur M. Wolfe, is the most distant rotating disk galaxy ever observed. The unparalleled power of ALMA made it possible to see this galaxy spinning at 170 miles (272 kilometers) per second, similar to our Milky Way.

The discovery of the Wolfe Disk provides a challenge for many galaxy formation simulations, which predict that massive galaxies at this point in the evolution of the cosmos grew through many mergers of smaller galaxies and hot clumps of gas. In most galaxy formation scenarios, galaxies only start to show a well-formed disk around 6 billion years after the Big Bang. The fact that the astronomers found such a disk galaxy when the universe was only ten percent of its current age, indicates that other growth processes must have dominated. "We think the Wolfe Disk has grown primarily through the steady accretion of cold gas," said J. Xavier Prochaska, of the University of California, Santa Cruz and coauthor of the paper. "Still, one of the questions that remains is how to assemble such a large gas mass while maintaining a relatively stable, rotating disk." "The star formation rate in the Wolfe Disk is at least ten times higher than in our own galaxy," adds Prochaska. "It must be one of the most productive disk galaxies in the early universe."

The findings have been published in the journal Nature.

1
$ 0.00
Avatar for t0ny420
4 years ago

Comments