Solving Trigonometric Functions of Two Angles.

0 19
Avatar for Valryan14
4 years ago

Today, in this article I'm gonna show to you how to solve a Trigonometric Functions of the Two Angles. This might help you in your math subject especially for those who hates Mathematics.

1.) Find the exact value of of sin75°

Solution:

sin(75°) = sin(30°+45°)

Using this formula; sin(A+B) = sinAcosB + cosAsinB

Given:

sinA = sin30°= ½

cosB = cos45°= √2/2

cosA = cos30°= √3/2

sinB = sin45°= √2/2

sin(30°+45°) = sin30°cos45° + cos30°sin45°

sin(30°+45°) = (1/2)(√2/2) + (√3/2)(√2/2)

sin(30°+45°) = (√2/4) + (√6/4)

sin(75°) = (√2 + √6)/4

2. Find the exact value of of tan15°

Solution:

tan15° = tan(60° -45°)

Using this formula tan(A-B) = (tanA -tanB)/(1 +tanAtanB)

Given:

tanA = tan60° = √3

tanB = tan45° = 1

tan(60° -45°) = (√3 -1)/(1 +√3)

tan(60° -45°) = [(√3 -1)/(1 +√3)]*[(1-√3)/(1-√3)] -----> (Rationalize the denominator

tan(60° -45°) = (2√3 -4)/(-2)

tan15° = -2√3 +2

3. If sinA=2/3, find sin(A-90°).

Solution:

Using Subtraction Formula; sin(A-B) = sinAcosB - cosAsinB

Since sinA=2/3 = o/h, we’re going to solve for “a” using Phythagorean theorem

h^2 = a^2 +o^2

3^2 = a^2 +2^2

a = √5

sin(A-90°) = sinAcos90° - cosAsin90°

Given:

sinA =2/3

cosA =a/h =√5/3 --------> (substitute the value of “a” we have solve ealier)

cos90° =0

sin90° =1

.

sin(A-90°) = (2/3)*0 – (√5/3)

sin(A-90°) = -√5/3

4. Given sinA =4/5 and cosB =5/13, find sin(A+B) +sin(A-B).

Solution:

Simplify first sin(A+B) +sin(A-B)

sin(A+B) +sin(A-B) = (sinAcosB +cosAsinB)+(sinAcosB -cosAsinB)

sin(A+B) +sin(A-B) = 2sinAcosB

2sinAcosB

2(4/5)(5/13)

(substitute the given values)

= 8/13

5. Find the exact value of (tan73° +tan32°)/(1 –tan73°tan32°).

Solution:

Notice the given expression above is in the form of “(tanA +tanB)/(1 -tanAtanB)” which is equal to tan(A+B) thus,

tan(73°+32°) = (tan73° +tan32°)/(1 –tan73°tan32°).

tan(73°+32°) = tan(105°) =tan(60°+45°) --------> (we rewrite the given angle as the sum of two special angle) 

tan(60°+45°) = (tan60° +tan45°)/(1 –tan60°tan45°)

Given:

tan(45°) =1

tan(60°) =√3

tan(60°+45°) = (tan60° +tan45°)/(1 –tan60°tan45°)

tan(60°+45°) = (√3 +1)/(1 –√3)

tan(60°+45°) = [(√3 +1)/(1 –√3)]*[( 1 +√3)/( 1 +√3)] --------> (Rationalize the Denominator)

tan(60°+45°) = (2√3 +4)/(-2)

.

= -√3 -2

Conclusion

I know Maths really is hard to understand but if you pursue and enjoy it you will get used to it and you can learn more easily.

0
$ 0.00
Sponsors of Valryan14
empty
empty
empty
Avatar for Valryan14
4 years ago

Comments