Earth

1 9
Avatar for Cristy
Written by
3 years ago

View of the Earth, taken in 1972 by the crew of Apollo 17

Earth is the only planet known to support life, and its natural features are the subject of many fields of scientific research. Within the solar system, it is third closest to the sun; it is the largest terrestrial planet and the fifth largest overall. Its most prominent climatic features are its two large polar regions, two relatively narrow temperate zones, and a wide equatorial tropical to subtropical region.[7] Precipitation varies widely with location, from several metres of water per year to less than a millimetre. 71 percent of the Earth's surface is covered by salt-water oceans. The remainder consists of continents and islands, with most of the inhabited land in the Northern Hemisphere.

Earth has evolved through geological and biological processes that have left traces of the original conditions. The outer surface is divided into several gradually migrating tectonic plates. The interior remains active, with a thick layer of plastic mantle and an iron-filled core that generates a magnetic field. This iron core is composed of a solid inner phase, and a fluid outer phase. Convective motion in the core generates electric currents through dynamo action, and these, in turn, generate the geomagnetic field.

The atmospheric conditions have been significantly altered from the original conditions by the presence of life-forms,[8] which create an ecological balance that stabilizes the surface conditions. Despite the wide regional variations in climate by latitude and other geographic factors, the long-term average global climate is quite stable during interglacial periods,[9] and variations of a degree or two of average global temperature have historically had major effects on the ecological balance, and on the actual geography of the Earth.[10][11]

GeologyEdit

Main article: Geology

Geology is the science and study of the solid and liquid matter that constitutes the Earth. The field of geology encompasses the study of the composition, structurephysical properties, dynamics, and history of Earth materials, and the processes by which they are formed, moved, and changed. The field is a major academic discipline, and is also important for mineral and hydrocarbon extraction, knowledge about and mitigation of natural hazards, some Geotechnical engineering fields, and understanding past climates and environments.

Geological evolutionEdit

Three types of geological plate tectonic boundaries

The geology of an area evolves through time as rock units are deposited and inserted and deformational processes change their shapes and locations.

Rock units are first emplaced either by deposition onto the surface or intrude into the overlying rock. Deposition can occur when sediments settle onto the surface of the Earth and later lithify into sedimentary rock, or when as volcanic material such as volcanic ash or lava flows, blanket the surface. Igneous intrusions such as batholithslaccolithsdikes, and sills, push upwards into the overlying rock, and crystallize as they intrude.

After the initial sequence of rocks has been deposited, the rock units can be deformed and/or metamorphosed. Deformation typically occurs as a result of horizontal shortening, horizontal extension, or side-to-side (strike-slip) motion. These structural regimes broadly relate to convergent boundariesdivergent boundaries, and transform boundaries, respectively, between tectonic plates.

Historical perspectiveEdit

Main articles: History of the Earth and Evolution

An animation showing the movement of the continents from the separation of Pangaea until the present day

Earth is estimated to have formed 4.54 billion years ago from the solar nebula, along with the Sun and other planets.[12] The moon formed roughly 20 million years later. Initially molten, the outer layer of the Earth cooled, resulting in the solid crust. Outgassing and volcanic activity produced the primordial atmosphere. Condensing water vapor, most or all of which came from ice delivered by cometsproduced the oceans and other water sources.[13] The highly energetic chemistry is believed to have produced a self-replicating molecule around 4 billion years ago.[14]

Plankton inhabit oceans, seas and lakes, and have existed in various forms for at least 2 billion years[15]

Continents formed, then broke up and reformed as the surface of Earth reshaped over hundreds of millions of years, occasionally combining to make a supercontinent. Roughly 750 million years ago, the earliest known supercontinent Rodinia, began to break apart. The continents later recombined to form Pannotia which broke apart about 540 million years ago, then finally Pangaea, which broke apart about 180 million years ago.[16]

During the Neoproterozoic era, freezing temperatures covered much of the Earth in glaciers and ice sheets. This hypothesis has been termed the "Snowball Earth", and it is of particular interest as it precedes the Cambrian explosion in which multicellular life forms began to proliferate about 530–540 million years ago.[17]

Since the Cambrian explosion there have been five distinctly identifiable mass extinctions.[18] The last mass extinction occurred some 66 million years ago, when a meteorite collision probably triggered the extinction of the non-avian dinosaurs and other large reptiles, but spared small animals such as mammals. Over the past 66 million years, mammalian life diversified.[19]

Several million years ago, a species of small African ape gained the ability to stand upright.[15] The subsequent advent of human life, and the development of agriculture and further civilization allowed humans to affect the Earth more rapidly than any previous life form, affecting both the nature and quantity of other organisms as well as global climate. By comparison, the Great Oxygenation Event, produced by the proliferation of algae during the Siderian period, required about 300 million years to culminate.

The present era is classified as part of a mass extinction event, the Holocene extinction event, the fastest ever to have occurred.[20][21] Some, such as E. O. Wilson of Harvard University, predict that human destruction of the biosphere could cause the extinction of one-half of all species in the next 100 years.[22] The extent of the current extinction event is still being researched, debated and calculated by biologists.

11
$ 0.00
Sponsors of Cristy
empty
empty
empty
Avatar for Cristy
Written by
3 years ago

Comments

Nice article

$ 0.00
3 years ago